BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

نویسندگان

  • Rosemary A. Bayne
  • Douglas J. Donnachie
  • Hazel L. Kinnell
  • Andrew J. Childs
  • Richard A. Anderson
چکیده

STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD  increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to primary follicle transition.

A network of extracellular signaling factors has previously been shown to act in concert to control the ovarian primordial to primary follicle transition. The current study was designed to investigate the roles of the endogenous bone morphogenetic protein (BMP) inhibitors Gremlin 1 (GREM1) and GREM2 in primordial follicle transition in the rat ovary. GREM1 and GREM2 treatments were found to rev...

متن کامل

Differential regulation of gene expression in the digit forming area of the mouse limb bud by SHH and gremlin 1/FGF-mediated epithelial-mesenchymal signalling.

Spatially and temporally coordinated changes in gene expression are crucial to orderly progression of embryogenesis. We combine mouse genetics with experimental manipulation of signalling to analyze the kinetics by which the SHH morphogen and the BMP antagonist gremlin 1 (GREM1) control gene expression in the digit-forming mesenchyme of mouse limb buds. Although most mesenchymal cells respond r...

متن کامل

Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7.

Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during diabetic nephropathy (DN) has been suggested to be binding and inhibition of BMP-7. However, the precise interacti...

متن کامل

STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell

Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...

متن کامل

CER1 is a common target of WNT and NODAL signaling pathways in human embryonic stem cells.

Nodal and BMP signaling pathways network with WNT signaling pathway during embryogenesis and carcinogenesis. CER1 (Cerberus 1) and GREM3 (CKTSF1B3 or CER2) inhibit NODAL signaling through ACVR1B (ALK4) or ACVR1C (ALK7) to SMAD2 or SMAD3. GREM1 (CKTSF1B1) inhibits BMP signaling through BMPR1A (ALK3), BMPR1B (ALK6) or ACVR1 (ALK2) to SMAD1, SMAD5 or SMAD8. CER1, GREM1 and GREM3 are DAN domain (DA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016